Video Object Detection Using Event-Aware Convolutional Lstm and Object Relation Networks

نویسندگان

چکیده

Common video-based object detectors exploit temporal contextual information to improve the performance of detection. However, detecting objects under challenging conditions has not been thoroughly studied yet. In this paper, we focus on improving detection for events such as aspect ratio change, occlusion, or large motion. To end, propose a video network using event-aware ConvLSTM and relation networks. Our proposed is able highlight area where those take place. Compared with traditional ConvLSTM, method it easier support events. further performance, an module supporting frame selection applied enhance pooled features target ROI. It effectively selects same from one reference frames rather than all them. Experimental results ImageNet VID dataset show that achieves mAP 81.0% without any post processing can handle efficiently in

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object Detection using Convolutional Neural Networks

We implement a set of neural networks and apply them to the problem of object classification using well-known datasets. Our best classification performance is achieved with a convolutional neural network using ZCA whitened grayscale images. We achieve good results as measured by Kaggle leaderboard ranking.

متن کامل

Relation Networks for Object Detection

Although it is well believed for years that modeling relations between objects would help object recognition, there has not been evidence that the idea is working in the deep learning era. All state-of-the-art object detection systems still rely on recognizing object instances individually, without exploiting their relations during learning. This work proposes an object relation module. It proc...

متن کامل

Convolutional Gating Network for Object Tracking

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem.  The paper presents a new model for combining convolutiona...

متن کامل

Object Classification using Deep Convolutional Neural Networks

The objective of this research project is to explore the impact on performance by varying architectures of deep neural networks. Deep neural networks have resurged in interest by researchers when, in 2012, Krizhevsky et al. submitted a deep convolutional neural network to the ILSVRC (ImageNet Large Scale Visual Recognition Challenge) and achieved significantly-higher results than the entire com...

متن کامل

Predicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTM

Over the past few years, deep neural networks (DNNs) have exhibited great success in predicting the saliency of images. However, there are few works that apply DNNs to predict the saliency of generic videos. In this paper, we propose a novel DNN-based video saliency prediction method. Specifically, we establish a large-scale eye-tracking database of videos (LEDOV), which provides sufficient dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2021

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics10161918